توسعۀ کاربردهای الگوریتمیک در معماری مرور و تحلیلی بر سیستم‏‌های L

نوع مقاله : مقالۀ پژوهشی

نویسندگان

1 پژوهشگر دکتری فناوری معماری، دانشکدۀ معماری، پردیس هنرهای زیبا، دانشگاه تهران، ایران.

2 دانشیار دانشکدۀ معماری، پردیس هنرهای زیبا، دانشگاه تهران، ایران.

3 استادیار دانشکدة معماری و شهرسازی، دانشگاه شهید بهشتی، ایران.

چکیده

بیان مسئله: سیستم‏های L یکی از الگوریتم‏های محاسبة فرایند خودسازمانده «رشد حساس به محیط» گیاهان و یکی از پنج روش اصلی مولد هستند که با توجه به ساختار و زمینة اصلی کاربرد، پتانسیل‏های زیادی در معماری نوید می‏دهند، اما در عین حال، نمونه‏های به‏کارگیری آنها در معماری اندک بوده و هنوز به‏میزان کافی توسعه نیافته‏اند. لذا توسعة آنها مستلزم مطالعه‏ای مروری جامعی است که ضمن بررسی در زمینة اصلی و شناسایی پتانسیل‏های محتمل،‏ مروری بر پیشینة کاربردهای آن در معماری و همچنین در سایر زمینه‏ها از جمله شهرسازی، مهندسی سازه، هوافضا و غیره کرده و ضمن تقسیم‏بندی و مقایسة این کاربردها، با این دیدگاه پیشنهاداتی جهت توسعه ارائه کند.
هدف پژوهش: هدف از این پژوهش بررسی جامع سیستم‌های L و شناسایی کاربردها و پتانسیل‌های آن در معماری است.
روش پژوهش: این مقالة مروری، به‏روش توصیفی-تحلیلی بوده و گردآوری داده‏ها در آن به‏صورت اسنادی است. اسناد استفاده‌شده در این مقاله شامل انواع مقالات، کتاب‏ها، پایان‏نامه‏ها و مسابقات معماری معتبری است که تمام یا بخشی از آنها به پژوهش درمورد کاربردهای معماری و سایر کاربردهای مرتبط سیستم‏های L می‌پردازد که از حدود سال 2000 م. به‏بعد انتشار یافته‏اند.
نتیجهگیری: با بررسی الگوریتم در زمینة گیاه‌شناسی، مشاهده می‏شود پنج کانسپت اصلی سیستم‏های L عبارتند از: توسعه، انتزاع، خودمتشابهی، پیچیدگی ‏درعین سادگی و توپولوژی؛ که در این میان کانسپت توسعه در معماری کاربرد بیشتری داشته، درحالی که سایر کانسپت‏ها کمتر موردتوجه بوده است. در این زمینه رصد کاربردها در حوزه‏های دیگر و متدلوژی‏های به‏کارگرفته الهام‏بخش خواهد بود که در بخش سوم با بررسی جامع، ضمن تقسیم‏بندی کاربردهای مختلف، به مرور آن پرداخته شده است. روند تحقیقات در کاربرد معماری سیستم‏های L شناسایی‏ و دلایل کاهش آن در سال‏های اخیر و پیشنهاداتی در راستای توسعه بیان می‏شود. تحلیل‏های دیگری نیز از جمله اعتبار علمی اسناد، انواع کاربردها، روش‏های استفاده از سیستم L و مرحلة استفاده از آن در طراحی نیز ارائه شده ‏است.

کلیدواژه‌ها


عنوان مقاله [English]

Development of Algorithmic Applications in Architecture: A Review and Analysis of L-Systems

نویسندگان [English]

  • Leila Nouri 1
  • Katayoun Taghizadeh 2
  • Matin Alaghmandan 3
1 Ph.D. Student of Architectural Technology, University of Tehran, Iran.
2 Associate Professor, Faculty of Fine Arts, School of Architecture, University of Tehran,Iran.
3 Assistant Professor, Faculty of Architecture & Urban Planning, Shahid Beheshti University, Tehran, Iran.
چکیده [English]

Problem Statement: L-systems are among the algorithms for calculating the self-organized
process of “environmentally sensitive growth” of plants. They are one of the five main generative
methods that, given the structure and main field of application, promise great potential in
architecture. But at the same time, examples of their application in architecture are few and have
not yet been sufficiently developed. Therefore, their development requires a comprehensive study.
So, in this study, while identifying the possible potentials in architecture, the background of their
applications in architecture as well as in other fields are reviewed. Then, these applications are
divided and compared, and accordingly, some suggestions for development are presented.
Research objective: The purpose of this research is to comprehensively investigate L-systems
and identify their applications and potentials in architecture.
Research method: This article is descriptive-analytical, and the data collection method is
documentary-based. The documents used in this article include a variety of articles, books,
dissertations, and architectural competitions, all or part of which is related to research on
architectural applications and other related applications of L-systems that have been published
since 2000.
Conclusion: Exploring the algorithm in the field of botany, the five main concepts of L systems are:
development, abstraction, self-similarity, complexity in simplicity, and topology; Among these,
the concept of development is more popular in architecture, while other concepts have received
less attention. In this regard, reviewing their applications in other fields and their methodologies
will be inspiring. In this article, research trends in the architectural applications of the L-system are
identified and the reasons for its decline in recent years, as well as suggestions for development,
are presented. Other analyses are also presented, including the scientific validity of the documents
used, the types of applications, the methodology of the L-system, and the design stage.

کلیدواژه‌ها [English]

  • L-systems
  • Self-similarity
  • Topology
  • Abstraction
  • Development
  • Algorithmic architecture
Alfaris, A. (2009). Emergence Through Conflict The Multi-Disciplinary Design System (MDDS ). (Unpublished P.hD thesis). Massachusetts Institute of Technology, Cambridge, USA.
Alnobani, A. A. F. (2018). Architectural Narratives Framework for Geometry Adaptation through Representations of Voxels and Tetra-Meshes. (Unpuplished Master’s Thesis). Carnegie Mellon University, Pittsburgh, USA.
Antoniuk, I., Hoser, P., & Strzęciwilk, D. (2019). L-system Application to Procedural Generation of Room Shapes for 3D Dungeon Creation in Computer Games. Advances in Intelligent Systems and Computing, (889), 375–386.
Arponen, E., Haggrén, E., Herneoja, A., Hinkka, E., Honkanen, H., Kanninen, M., Kosonen, S., Logrén, S., Lundén, E., Metso, O., Parkkali, M., Rautiainen, V., Tanska, T., Väisänen, A., & Österlund, T. (2009). Generate - From algorithm to structure. Oulun yliopisto: University of Oulu.
Becker, S., Peter, M., Fritsch, D., Philipp, D., Baier, P., & Dibak, C. (2013). Combined Grammar for the Modeling of Building Interiors. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-4/W1, 1–6.
Bessa, M. (2009). Algorithmic design. Architectural Design, 79(1), 120–123.
Byrne, J., Hemberg, E., Brabazon, A., & O’Neill, M. (2012). A Local Search Interface for Interactive Evolutionary Architectural Design. In: Proceedings of the International Conference on Evolutionary and Biologically Inspired Music and Art (Evo-MUSART’2012). pp. 23–34.Springer, Berlin, Heidelberg
Byrne, J., Hemberg, E., & O’Neill, M. (2011). Interactive operators for evolutionary architectural design. Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, 43–44.
Chu, K. S. (2014). Karl Chu X Phylum project records. Retrieved Jan 10, 2022, from https://www.cca.qc.ca/en/archives/440077/karl-chu-x-phylum-project-records.
Coates, P., Broughton, T., & Jackson, H. (1999). Exploring 3D design worlds using Lindenmeyer systems and Genetic Programming. Evolutionary Design Using Computers. San Francisco, California.
Coates, P. S., Appels, T., Simon, C. & Derix, C. (2001). Current work at CECA Three projects : Dust, Plates & Blobs, Proceedings of the 4th Generative Art Conference (GA).
Coelho, A., Bessa M., Sousa A. A., F. Ferreira (2007). Expeditious modelling of virtual urban environments with geospatial L-systems. Computer Graph Forum, 26 (4), 769–782.
Coelho, A., Sousa, A., & Ferreira, F. N. (2020). Procedural modeling for cultural heritage. Book Section.In Visual Computing for Cultural Heritage, edited by F. Liarokapis, A.Voulodimos, N. Doulamis, and A. Doulamis, pp. 63–81. Springer Series on Cultural Computing. Springer,
Cham.Diniz, N. (2012). Process-Driven concepts. 17th International Conference on Computer-Aided Architectural Design Research in Asia. Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong.
Dollens, D. (2005). Digital Botanic Architecture. Art and Architecture in Digital Social-Contemporary City and Genetic City Conference. Barcelona: Retrieved Jan 3, 2022,  from: http://www.artyarqdigital.com/fileadmin/user_upload/PDF/Publicaciones_Jornada_ II/18-Jornadas_II._DennisDollens.pdf.
Ei-Khaldi, M. (2007). Mapping Boundaries of Generative Systems for Design Synthesis. Massachusetts Institute of Technology, Cambridge, USA..
Fernando, R., & Drogemuller, R. (2015). Recapitulation in generating spatial layouts. Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia CAADRIA: Emerging Experiences in the Past, Present and Future of Digital Architecture, Daegu , Korea.
Goos, G., & Hartmanis, J. (2004). Applications of Evolutionalry Computing: Lecture notes in computer science. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) V. 106. Springer-Verlag.
Gorgora.de. (2011). Relational Growth Grammars, In Applications of Graph Transformations with Industrial Relevance” Springer-Verlag Berlin Heidelberg, Department Ecoinformatics, Biometrics and Forest Growth. Göttingen: Georg-August University of Göttingen.
Gu, N., Singh, V., & Merrick, K. (2010). A framework to integrate generative design techniques for enhancing design automation. New Frontiers: Proceedings of the 15th International Conference on Computer-Aided Architectural Design in Asia (CAADRIA). Hong Kong: Association of Computer-Aided Architectural Design Research in Aisa (CAADRIA), pp. 127–136.
Hanafin, S., Datta, S., & Rolfe, B. (2011). TREE FAÇADES Generative Modelling with an Axial Branch Rewriting System. CAADRIA: Emerging Experiences in the Past, Present and Future of Digital Architecture, Daegu , Korea.
Hartl, D. J., Reich, G. W., & Beran, P. S. (2016). Additive Topological Optimization of Muscular-Skeletal Structures via Genetic L-System Programming. 24th AIAA/AHS Adaptive Structures Conference, San Diego, California, USA.
Hemberg, M. (2001). GENR8 - A Design Tool for Surface Generation. Massachusetts Institute of Technology, Cambridge, USA. Cambridge: MIT.
Hemberg, M., O’Reilly, U.-M., Menges, A., Jonas, K., Goncalves, M. da C., & Fuchs, S. R. (2007). Exploring generative growth and evolutionary computation in architectural design. In: Machado, P., Morelo, J.J. (eds.) Art of Artificial Evolution, Springer,Heidelberg.
Hemberg, M., & O’Reilly, U. M. (2004). Extending Grammatical Evolution to Evolve Digital Surfaces with Genr8. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), (3003), 299–308.
Hensel, M. (2006). Computing Self-Organisation: Environmentally Sensitive Growth Modelling. Architectural Design, 76(2), 12–17.
Hensel, M., & Menges, A. (2006). Material and digital design synthesis. Architectural Design, 76(2), 88–95.
Hornby, G. S., & Pollack, J. B. (2001). The advantages of generative grammatical encodings for physical design. Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, (1), 600–607.
Hornby, G. S. (2004). Functional scalability through generative representations: The evolution of table designs. Environment and Planning B: Planning and Design, 31(4), 569–587.
Ikonen, T. J., Marck, G., Sóbester, A., & Keane, A. J. (2018). Topology optimization of conductive heat transfer problems using parametric L-systems. Structural and Multidisciplinary Optimization, 58(5), 1899–1916.
Jackson, H. (2002). Toward a Symbiotic Coevolutionary Approach to Architecture. In D. W. C. Peter J. Bentley (Eds.), Creative evolutionary systems. Burlington:  Morgan Kaufmann.
Jones, M. (2012).  Retrieved 3 Jan, 2022, from https://meganjonesdesign.wordpress.com/
Jormedal, M. (2013). Procedural generation of road networks using L-systems [Linköpings universitet]. Retrieved 3 Jan, 2022, from http://www.vehicular.isy.liu.se/Publications/MSc/09_EX_4227_JL.pdf
Kahn, S. (2008). Thinking Outside The Grid: Structural Design Through Multi-parametric Growth and Self-Adaptive Analysis. Cincinnati: University of Cincinnat.
Kearney, A. C. (2015). Multi-objective optimization of aerostructures inspired by nature. Hawai: university of Hawai.
Khetan, A., Lohan, D. J., & Allison, J. T. (2015). Managing variable-dimension structural optimization problems using generative algorithms. Structural and Multidisciplinary Optimization, 52(4), 695–715.
Kiptiah Binti Ariffin, M., Hadi, S., & Phon-Amnuaisuk, S. (2017). Evolving 3D models using interactive genetic algorithms and L-systems. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)”, 10607 LNAI(i), 485–493.
Kniemeyer, O., Barczik, G., Hemmerling, R., & Kurth, W. (2008). Relational Growth Grammars – A Parallel Graph Transformation Approach with Applications in Biology and Architecture. In Sch¨urr, A., Nagl, M., and Z¨undorf, A., editors, Applications of Graph Transformations with Industrial Relevance, volume 5088 of Lecture Notes in Computer Science, pages 152–167. Springer Berlin Heidelberg.
Kobayashi, M. H. (2010). On a biologically inspired topology optimization method. Communications in Nonlinear Science and Numerical Simulation, 15(3), 787–802.
Landreneau, E., Ozener, O. O., Pak, B., Akleman, E., & Keyser, J. (2006). Interactive Rule-Based Design. Book Section, In J. P. van Leeuwen & H. J. P. Timmermans (eds.), Innovations in Design & Decision Support Systems in Architecture and Urban Planning. Springer, Printed in the Netherlands.
Lane, B. (2015). Cell complexes: The structure of space and the mathematics of modularity. Alberta: University of Calgary.
Lorenzo-Eiroa, P. (2013). Architecture in Formation. London & New York: Routledge.
Marinčić, N. (2019). An overview architecture and computation. In N. Marinčić (Ed.), Computational Models in Architecture. Birkhäuse: De Gruyter.
Marvie, J. E., Perret, J., & Bouatouch, K. (2005). The FL-system: A functional L-system for procedural geometric modeling. Visual Computer, 21(5), 329–339.
McDermott, J., Swafford, J. M., Hemberg, M., Byrne, J., Hemberg, E., Fenton, M., McNally, C., Shotton, E., & O’Neill, M. (2012). String-rewriting grammars for evolutionary architectural design. Environment and Planning B: Planning and Design, 39(4), 713–731.
McQuillan, I., Bernard, J., & Prusinkiewicz, P. (2018). Algorithms for inferring context-sensitive L-systems. Book Section, In “Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)”, 117–130.
Menges, A. (2006). Polymorphism. Architectural Design, (76), 78–87.
Menges, A. (2009). New Czech National Library in Prague. Retrieved Jan 3, 2022, from http://www.achimmenges.net/?p=4452.
Mikkelsen, M. K. (2020). Applications of parameterized l-systems for preliminary structural design and optimization. (Unpublished P.hD Thesis). A&M University, Texas, USA.
Mishra, J., & Mishra, S. (2007). L-systems Fractals. In Elsevier, Radarweg 29, PO Box 211, 1000 AE Amsterdam. The Netherlands.
Mountstephens, J., & Teo, J. (2020). Progress and challenges in generative product design: A review of systems. Computers, 9(4), 1–23.
Narahara, T. (2010). Self-organizing Computation A Framework for Generative Approaches to Architectural Design. Massachusetts: Harvard University.
Nordin, A., Hopf, A., & Motte, D. (2013). Generative design systems for the industrial design of functional mass producible natural-mathematical forms. Retrieved Jan 3, 2022, from http://lup.lub.lu.se/record/4113641/file/4113677.pdf
O’Neill, M. & Brabazon, A. (2008). Evolving a logo design using Lindenmayer systems, Postscript & Grammatical Evolution. 2008 IEEE Congress on Evolutionary Computation, CEC.
O’Reilly, U. M., & Hemberg, M. (2007). Integrating generative growth and evolutionary computation for form exploration. Genetic Programming and Evolvable Machines, 8(2), 163–186.
Österlund, T. (2013). Design possibilities of emergent algorithms for adaptive lighting system. Nordic Journal of Architectural Research, (1), 159–184.
Pan, Y. C. (2007). Inverted Skyscraper Typology. Retrieved Jan 2, 2022 from https://www.evolo.us/inverted-skyscraper-typology/
Parish, Y. I. H., & Müller, P. (2001). Procedural modeling of cities. Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH ’01, (6), 301–308.
Peter, M. (2017). Modelling of indoor environments using lindenmayer systems. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W7(2W7), 385–390.
Popovici, E. (2005). Evolving Families of Designs Using L-Systems. Department of Computer Science George Mason University Technical Report Series (Issue GMU-CS-TR-2005-8).
Prusinkiewicz, P., Cieslak, M., Ferraro, P., & Hanan, J. (2018). Modeling Plant Development with L-Systems. In R. J. Morris (Ed.), Mathematical Modelling in Plant Biology.Switzerland: Springer..
Risi, S., & Togelius, J. (2020). Increasing generality in machine learning through procedural content generation. Nature Machine Intelligence, 2(8), 428–436.
Romero, J. J., & Machado, P. (2008). The Art of Artificial Evolution. In J. Romero & P. Machado (Eds.), Springer-Verlag Berlin Heidelberg. Berlin: Springer.
Runions, A., & Prusinkiewicz, P. (2012). Computational models of plant development and form. New Phytologist, 193(3), 549–569.
Ryan, C., O’Neill, M., & Collins, J. J. (2018). Handbook of grammatical evolution. Berlin: Springer.
Saleri, R. (2020). The Fatal Birth of Architecture: The Obligation of Order. Retrieved Jan 3, 2022, from http://www.springer.com/series/15179
Sharp, A., Blay, G., Kholodova, J., & Correa, D. (2021). An Autonomous Bio-Inspired Shading Façade System based on Plant Movement Principles. Towards a New, Configurable Architecture - Proceedings of the 39th ECAADe Novi Sad. Serbia.
Shiffman, D. (2012). The Nature of Code. Retrieved Jan 3, 2022, from https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119546665.ch2
Soltanzadeh, A. & Masnavi, M. R. (2017). Inspiration from dendriform structures for the design of the column and roof to cover large openings using the Linden Meyer system. 4th National Conference on Applied Research in Civil Engineering, Tehran, Iran.
Tang, P. (2005). Co-generative 3D Form : The Framework of Co-generative Design System. Proceedings of the 10th International Conference on Computer Aided Architectural Design Research in Asia, New Delhi, India
Taylor-Hell, J. (2005). Incorporating biomechanics into architectural tree models. Processing of 18th  Brazilian Symposium of Computer Graphic and Image, Natal, RN, Brazil.
Wonka, P., Aliaga, D., Müller, P., & Vanegas, C. (2011). Modeling 3D urban spaces using procedural and simulation-based techniques. SIGGRAPH ‘11: ACM SIGGRAPH 2011 Courses, SIGGRAPH’11.
Ydroponic-garden (2009). Retrieved Jan 3, 2022, from https://www.worldarchitecturenews.com/article/1500277/hydroponic-garden
Петрушевски, Љ., Деветаковић, М., Митровић, Б., & Дабић, М. (2010). Development and Application of Explorative Tools in the Field of Architectural. Geometry: L-Systems.